Research Site Leader: Xinhua Jia, North Dakota State University

SITE CHARACTERISTICS
- Drainage system installed in 2002 and 2011
- Soil: Antler and Antler-Mustinka silty clay loam, Doran clay loam, Clearwater-Reis silty clay
- Rotation: Corn-Soybean, occasionally Sugar Beet

WATER MANAGEMENT PRACTICES
- Non-Drained (2008-2011)
- Conventional Drainage (2008-2011)
- Controlled Drainage with Subirrigation (depth 3-4', spacing 60' before 2011, 30' after 2011)

SITE MEASUREMENTS (2008-2015, n = # of years)
- Tile Flow (n = 7)
- Tile Water Quality: Nitrate-N, Reactive P, Electrical Conductivity (n = 7)
- Water Table Depth (n = 7)
- Irrigation Flow (n = 7)
- Soil Texture (n = 1)
- Soil Bulk Density (n = 2)
- Hydraulic Conductivity (n = 1)
- Soil Moisture and Temperature (n = 7)
- Soil Electrical Conductivity (n = 7)
- Soil Fertility: pH, Salinity (n = 1)
- Soil Nitrate (from 2016)
- Crop Yield (n = 7)

- On-Site Weather Station: Precipitation, Air Temperature, Relative Humidity, Solar Radiation, Wind Speed and Direction, Evapotranspiration (n = 7)

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-68007-23193. "Managing Water for Increased Resiliency of Drained Agricultural Landscapes". http://transformingdrainage.org. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.