Modeling the Hydrology of an Artificially Drained Field Irrigated with Swine Lagoon Effluent

and Life Sciences

Yu Liu¹; Mohamed Youssef¹; George Chescheir¹; R. Wayne Skaggs¹; Timothy W. Appelboom¹; Chad Poole¹ ¹Department of Biological and Agricultural Engineering, North Carolina State University

5. DRAINMOD Simulation

• Model modification:

DRAINMOD code was modified to read in measured daily water table depth and use it as a dynamic head that drives seepage flux.

• Statistical performance measures:

Mean absolute error (MAE), Nash-Sutcliffe modeling efficiency (NSE), and percent bias (PBIAS) were used to statistically compare measured and predicted water table depth and drainage flow

• Model calibration strategy:

- a. The model was first calibrated for FD without considering seepage (FDN scenario) by adjusting the WTD-volume drained and WTD-Upflux relationships, effective rooting depth, and lower limit of water content in root zone.
- b. The calibrated model for the FDN scenario was used to simulate the field hydrology under CD conditions without considering seepage (CDN scenario). However, seepage was found an important water balance component in CD plots.
- c. Lateral seepage parameters were calibrated with constant head (Hr) for CD (CDL_ConHr) and FD (FDL_ConHr).
- d. Lateral seepage parameters were calibrated with dynamic head (Hr) for FD (FDL_DynHr) and CD (CDL_DynHr).

a) Drainage system design parameters		(d) Green-Ampt in	(d) Green-Ampt infiltration parameters				
arameters	Value	Water Table (cm)	A Coefficient	B Coefficient			
Drain depth, B (cm)	100	0	0	3			
Effective drain radius, Re (cm)	1.5	20	0.42	3			
Depth to impermeable Layer, H (cm)	300	40	0.59	2.5			
Drainage coefficient, D (cm day ⁻¹)	2.5	100	1.25	2.5			
A aximum surface storage, Sm (cm)	1	150	2.21	2.5			
Kirkham's Depth, SI (cm)	0.5	1000	2.21	2.5			
b) Soil layers and saturated hydraulic	conductivity (Ks)	(e) Relationship b volume drained (V	etween water tabl Vd), and upward Fl	e depth (WTD) lux (Upflux)			
Bottom depth of soil layers (cm)	Ks (cm hr^{-1})	WTD (cm)	Vd (cm)	Upward flux $(cm hr^{-1})$			
0-20	16	0	0	0.5			
20-36	4.5	9	0.18	0.5			
36-75	3.2	12	0.24	0.5			
75-100	0.4	20	0.4	0.1218			
100-175*	0.6	25	0.5	0.0612			
c) Soil water characteristic relationshi	ip	30	0.686	0.0323			
Soil water content, θ (cm ³ cm ⁻³)	Head (cm)	35	0.981	0.0182			
0.493	0.493 0		1.311	0.0101			
0.488	-4	45	1.7	0.0059 0.0016			
0.482	-14	60	2.55				
0.472	-34	105	4.9	0.0006			
0.457	-64	150	6.5	0.0003			
0.438	-104	200	7	0			
0.428	-204	500	71.088	0			
0.4	-2000	1000	100	0			
f) Input parameters for lateral seepage	e settings in controlle	d drainage (CD) and	free drainage (FL) plots			
nput parameters			CD	FD			
Thickness of transmissive layer, Hd (cm)			0	0			
Constant hydraulic head of receiving/sourc	e waters, Con_Hr (cm)		200	215			
Distance to receiving/source waters, Lr (cn	n)		2500	2500			
Iorizontal hydraulic conductivity of trans	missive layer, Kl (cm h	nr ⁻¹)	4.2	4.2			
g) The effective rooting depth function		(h) Dynamic hydr	aulic head of rece	iving/source			
Date Effe	ective rooting depth (cr	n) waters, Dyn_Hr (cm)				
12/1-3/1	5	FD	H-CDWTD-DIFF				
3/1-3/15, 11/1-12/1	3/1-3/15, 11/1-12/1 10		If(H-FDWTD) >= 200 cm, 200 cm				
3/15-10/1	15		If (H-FDWTD)<200 cm, H-FDWT				

* 175 cm is the effective depth of the soil profile

CDWTD and FDWTD are the WTD from CD and FD plots, respectively (cm);

DIFF is a constant term that represent impact of external factors such as the intercept of lateral seepage by guard drains and the drawdown of water table depth in surrounding area. DIFF value was calibrated as 15 cm.

Acknowledgement

12 +

6 +

In Cooperation With: NC STATE UNIVERSITY A&T STATE UNIVERSITY COOPERATIVE **EXTENSION** Helping People Put Knowledge to Work

Thanks to Dr. Lamyaa Negm for testing the completability of the DRAINMOD with dynamic Hr settings and support on DRAINMOD model parameterization. Thanks to Dr. Shiying Tian, Mr. Terry Armstrong, and colleagues from North Carolina State University for helping on vertical seepage analysis, grass yield measurement, monitor of swine lagoon effluent application, field data collection and processing.

Fig. 1 Observed and predicted water table depth (WTD), daily drainage, and cumulative drainage for conventional drainage (FD) plots during 2011-2014.

Table 2 Water table depth (WTD) and daily drainage flow for FDL_DynHr scenario										
Year -	Mean water ta	able depth (cm)			$M \wedge E(am)$	DDIAS (am)	NCE			
	Predicted	Observed	MAE (CIII)	FDIAS (CIII)						
2011	99.7	100.7	-	-	7.8	1.0	0.806			
2012	87.8	91.6	-	-	6.7	4.1	0.579			
2013	88.6	91.1	-	-	6.6	2.8	0.779			
2014	95.3	98.8	-	-	6.5	3.6	0.834			
4 year total	92.7	95.4	-	_	6.9	2.9	0.789			
Year -	Mean daily drainage flow (cm)		Accumulated drainage (cm)		$-\mathbf{M}\mathbf{A}\mathbf{F}(\mathbf{cm})$	PRIAS (cm)	NSE			
	Predicted	Observed	Predicted	Observed		T DIAS (CIII)	TIGE			
2011	0.057	0.067	20.7	24.5	0.049	15.8	0.717			
2012	0.145	0.146	53.1	53.4	0.060	0.4	0.660			
2013	0.147	0.145	53.6	52.8	0.051	-1.6	0.793			
2014	0.105	0.109	38.4	39.8	0.048	3.6	0.809			
4 year total	0.114	0.117	165.8	170.5	0.052	2.7	0.758			
-: Numbers	in above two co	olumns reversed								

Fig. 2 Observed and predicted water table depth (WTD), daily drainage, and cumulative drainage for controlled drainage (CD) plots during 2011-2014. Table 3 Water table depth (WTD) and daily drainage flow for CDL_DynHr scenario

		<u> </u>	Accumulated drainage (cm)				
Year	Predicted mean (cm)	Observed mean (cm)	MAE (cm)	PBIAS (cm)	NSE	Predicted	Observed
2011	87.0	96.8	12.586	10.2	0.731	2.1	0.6
2012	72.2	75.5	8.052	4.4	0.750	9.0	3.4
2013	75.8	72.0	8.122	-5.2	0.810	8.1	6.1
2014	84.8	78.4	9.428	-8.1	0.794	3.3	1.4
4 year Total	79.8	80.4	9.491	0.8	0.798	22.5	11.5

2011 2014 Total Average 2011 2012 2013 2014 Total

• Results of the simulations strongly suggested that lateral seepage was an important component of the water balance when CD is implemented on this site.

• DRAINMOD simulation result with seepage under dynamic hydraulic head of receiving/source waters (Hr) shows the best agreement between predicted and measured daily WTD and drainage volume.

• Simulation results showed that 96% of the reduction in subsurface drainage volume due to CD attributed to lateral seepage.

• A sandy layer at the 135 to 210 cm depth may be the major pathway for lateral seepage from CD plots to the unmanaged adjacent potion of the field.

	λ7	M	ND			N_{LS}			$\Lambda N_{\rm DEL}$			
Time	1 v I	ΓVΡ	FD	CD	Δ	FD	CD	Δ	FD	CD	Δ	LAIN DEN
						kg N ha⁻¹						
2011	295.8	17.1	15.1 ± 4.7	0.7 ± 0.2	-14.3	126.2 ± 5.1	121.9 ± 0.2	-4.3	18.8	10.5	-8.3	26.9
2012	498.3	19.7	28.2 ± 0.8	3.7 ± 1.4	-24.4	404.6 ± 18.7	370.3 ± 13.9	-34.3	-3.2	15.2	18.5	40.3
2013	460.3	18.1	55.3 ± 10.4	3.9 ± 0.9	-51.4	154.3 ± 4.3	172.1 ± 3.3	17.8	-12.8	8.0	20.8	12.7
2014	275.2	15.7	48.7 ± 3.3	0.8 ± 0.3	-47.9	171.5 ± 0.7	192.1 ± 11.5	20.6	-8.3	5.2	13.5	13.9
Total	1529.5	70.6	147.3 ± 17.7	9.2 ± 1	-138.1	856.6 ± 28.7	856.4 ± 0.6	-0.2	-5.6	38.9	44.5	93.8
Mean	382.4	17.7	36.8 ± 4.4	2.3 ± 0.3	-34.5	214.2 ± 7.2	214.1 ± 0.2	-0.1	-1.4	9.7	11.1	23.4
2012 [1]	260.7	5.2	3.3 ± 0.6	0.05 ± 0	-3.3	222.1 ± 17.5	209.9 ± 3	-12.2	-0.4	3.4	3.8	11.7
2012 [2]	237.6	14.5	24.8 ± 1.4	3.7 ± 1.4	-21.2	182.6 ± 1.2	160.4 ± 11	-22.1	-2.8	11.8	14.6	28.6
N _I , N ii	nput fr	om i	rrigation; N	N _P , N inp	ut fro	m precipita	tion; N _D , N	[loss	via s	ubsu	rface	
drainag	drainage: N ₁ , N uptake by grass: N ₁ , N loss through lateral seenage: A, the difference of											
N loss	betwee	en FI) and CD r	plots: ΛN	DEN. C	enhanced de	enitrificatio	n bv	$\dot{\mathbf{CD}}$ t	reatn	nent.	
[1]. Period from January 1 to May 11, 2012. [2] Period from May 11 to December 31, 2017												
The nitrogen untelse by gross in 2011 and 2012 — were estimated value												
The multiplane by grass in 2011 and $2012 [1]$ were estimated value.												
• The nitrogen that did not leave the field via the subsurface												
drainage system under CD was lost via enhanced denitrification												
	-	-										

(68%) and lateral seepage to adjacent fields (32%).

• Considering N transported via LS, the 94% "apparent" N reduction efficiency of CD is reduced to 66%.

7. Water Balance

Table 4 Predicted and observed water balance components for conventional drainage (FD) and controlled drainage (CD) plots, with and without seepage. (Observed) (Observed) ET (cm) D (cm) (Observed) RO (cm) LS (cm)

P (cm)	Irr (cm)			D (cm)					
Free drainage (FD) plots, FDL_DynHr scenario									
108.0	14.5	71.7	20.7	24.5	17.9	12.8			
124.5	12.4	80.0	53.2	53.4	2.8	-1.4			
114.7	9.5	77.8	53.6	52.8	0.0	-7.6			
99.2	6.9	74.6	38.4	39.8	0.0	-7.2			
446.4	43.3	304.0	165.8	170.5	20.7	-3.4			
111.6	10.8	76.0	41.5	42.6	5.2	-0.9			
Controlled drainage (CD) plots, CDL_DynHr scenario									
108.0	14.5	72.8	2.1	0.6	18.3	29.5			
124.5	12.4	80.8	9.0	3.4	4.2	39.4			
114.7	9.5	79.3	8.1	6.1	0.3	36.0			
99.2	6.9	75.3	3.3	1.4	0.0	29.3			
446.4	43.3	308.2	22.5	11.5	22.8	134.2			
111.6	10.8	77.1	5.6	2.9	5.7	33.5			

P is precipitation; Irr is irrigation, ET is evapotranspiration, D is subsurface drainage, RO is surface runoff, LS is lateral seepage.

8. Water Balance Conclusions

9. Nitrogen Balance Implications

Contact information: Yu Liu E-mail: yliu47@ncsu.edu,

yu.liu.ncsu@gmail.com Mobile: 919-592-7340